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1 Eigenvalues and Eigenvectors

It is a fundamental concept in linear algebra to study a linear operation L,
for example the multiplication of a vector by a matrix, by searching for those
special vectors such that the input is proportional to the output:

L[~v] = λ~v,

for some real or complex number λ. One can for example relate a resonance,
i.e. a steady-state periodic response (the output) of a system to a periodic
forcing (the input) to an eigenvalue problem.

1.1 Presentation and examples

To be more precise, we let A be a matrix of dimensions n× n. Then (λ,~v) is an
eigen-pair with λ the eigenvalue and ~v the eigenvector when ~v is nonzero and

(1) A~v = λ~v.

*pcazeaux@umn.edu
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1. Eigenvalues and Eigenvectors

Characteristic equation We can characterize an eigenvalue by observing
that the linear system:

(A− λIn)~v =~0

where In is the identity matrix, has a nonzero solution if and only if it is
underdetermined, that is if the determinant of A− λIn is zero! This leads to
the characteristic equation for eigenvalues:

(2) det(A− λIn) = 0.

Eigenspaces When λ is an eigenvalue, i.e. a solution of the (polynomial)
equation (2) above, then the homogeneous underdetermined system

(3) (A− λIn)~v =~0

has a space of solutions, called the eigenspace of λ. Any nonzero element of
this eigenspace is called an eigenvector associated with the eigenvalue λ.

Practical steps to the determination of eigenvalues and eigenvectors.

Step 1 Assemble the characteristic equation by computing the deter-
minant:

det(A− λIn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · · · · a1n

a21 a22 − λ
. . .

...

...
. . . . . . . . .

...

...
. . . an−1,n−1 − λ an−1,n

an1 · · · · · · an,n−1 ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Note that one always obtains a polynomial of order n as a result.

Step 2 Obtain the eigenvalues (λ1, . . . , λk with k ≤ n by solving the
polynomial equation,

det(A− λIn) = 0.

Step 3 For each eigenvalue λi, solve by the Gauß-Jordan method the
underdetermined system

(A− λIn)~v =~0,

by obtaining the RREF form of A− λIn.

In practice, this is only doable by hand for n = 2.
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1.1. Presentation and examples

Examples Let us start by looking at an easy 2× 2 example:

A =

[
5 7
−2 −4

]
.

As our first step, we introduce the variable λ and we compute the determinant

det (A− λI2) =

∣∣∣∣5− λ 7
−2 −4− λ

∣∣∣∣ = (5− λ)(−4− λ)− 7 · (−2) = λ2− λ− 6.

Next, we solve the characteristic equation for the eigenvalues,

λ2 − λ− 6 = 0.

This is a second order polynomial equation, so we compute the discriminant,
∆ = 1 + 24 = 25, which is positive.

The eigenvalues of A are:

λ1 =
1− 5

2
= −2 and λ2 =

1 + 5
2

= 3.

Finally, we find the eigenspaces by the Gauß-Jordan method. For the first
eigenvalue λ1 = −2, we solve the system[

5 7
−2 −4

] [
x
y

]
+ 2

[
x
y

]
=

[
7 7
−2 −2

] [
x
y

]
=~0.

We write this system in augmented matrix form and we compute the RREF,[
7 7 0
−2 −2 0

]
−→

[
1 1 0
0 0 0

]
.

Thus the eigenspace is the space of solutions of the equation x + y = 0 (first
line of the RREF), and we can take y as a free variable.

The eigenspace of A for the eigenvalue λ1 = −2 is deduced as:

~v = s
[
−1
1

]
with s ∈ R.

In particular, ~v1 =

[
−1
1

]
is an eigenvector for λ1 = −2.

We then repeat this analysis for λ2 = 3: we solve the system[
5 7
−2 −4

] [
x
y

]
− 3

[
x
y

]
=

[
2 7
−2 −7

] [
x
y

]
=~0.
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1. Eigenvalues and Eigenvectors

We write this system in augmented matrix form and we compute the RREF,[
2 7 0
−2 −7 0

]
−→

[
1 7/2 0
0 0 0

]
.

Thus the eigenspace is the space of solutions of the equation x + 7/2y = 0
(first line of the RREF), and we take y as a free variable:

The eigenspace of A for the eigenvalue λ2 = 3 is

~v = s
[
−7/2

1

]
with s ∈ R.

In particular, ~v2 =

[
−7/2

1

]
is an eigenvector for λ2 = −2. X

For our next example, we study the following 3× 3 matrix:

B =

 0 2 2
−1 0 −1
1 2 3

 .

The first step is to introduce the variable λ and compute the eigenvalue char-
acteristic equation:

det (B− λI3) =

∣∣∣∣∣∣
−λ 2 2
−1 −λ −1
1 2 3− λ

∣∣∣∣∣∣ = 0.

By developing along the first column, we have∣∣∣∣∣∣
−λ 2 2
−1 −λ −1
1 2 3− λ

∣∣∣∣∣∣ = +(−λ)

∣∣∣∣(−λ −1
2 3− λ

∣∣∣∣− (−1)
∣∣∣∣2 2
2 3− λ

∣∣∣∣+ (1)
∣∣∣∣ 2 2
−λ −1

∣∣∣∣
= −λ(λ(λ− 3) + 2) + (2(3− λ)− 4) + (−2 + 2λ)

= −λ(λ2 − 3λ + 2) + (2− 2λ) + (−2 + 2λ)

= −λ(λ− 1)(λ− 2).

The three eigenvalues of B are the roots of the expression above, i.e.

λ1 = 0, λ2 = 1, λ3 = 2.

As our next step we look for the three eigenspaces associated to each eigen-
value of B. First, for λ1 = 0 we look for solutions of the underdetermined
homogeneous system,

B~v =~0,
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1.1. Presentation and examples

by computing the RREF form of the augmented matrix 0 2 2 0
−1 0 −1 0
1 2 3 0

→
1 0 1 0

0 1 1 0
0 0 0 0


Since only the first and second columns are pivot columns, the third variable
is free:

The eigenspace of B for the eigenvalue λ1 = 0 is

~v = s

−1
−1
1

 for s ∈ R.

In particular, ~v1 =

−1
−1
1

 is an eigenvector associated with λ1 = 0.

Similarly, for λ2 = 1 we look for solutions of the underdetermined homo-
geneous system,

B~v = ~v,

by computing the RREF form of the augmented matrix−1 2 2 0
−1 −1 −1 0
1 2 2 0

→
1 0 0 0

0 1 1 0
0 0 0 0


Again only the first and second columns are pivot columns, and the third
variable is free:

The eigenspace of B for the eigenvalue λ2 = 1 is

~v = s

 0
−1
1

 for s ∈ R.

In particular, ~v2 =

 0
−1
1

 is an eigenvector associated with λ2 = 1.

Finally, for λ3 = 2 we look for solutions of the underdetermined homoge-
neous system,

B~v = 2~v,
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1. Eigenvalues and Eigenvectors

by computing the RREF form of the augmented matrix−2 2 2 0
−1 −2 −1 0
1 2 1 0

→
1 0 −1/3 0

0 1 2/3 0
0 0 0 0


Again only the first and second columns are pivot columns, and the third
variable is free:

The eigenspace of B for the eigenvalue λ3 = 2 is

~v = s

 1/3
−2/3

1

 for s ∈ R.

In particular, ~v3 =

 1
−2
3

 is an eigenvector associated with λ3 = 1.

Complex eigenvalues Sometimes, the characteristic polynomial does not
have (only) real roots and the eigenvalues can only be computed by using
complex numbers. An example is the simple matrix,

A =

[
0 1
−1 0

]
.

Indeed, the corresponding characteristic polynomial is

det (A− λI2) =

∣∣∣∣−λ 1
−1 −λ

∣∣∣∣ = λ2 + 1.

Clearly, the characteristic equation det (A− λI2) = 0 has two complex roots
λ1 = −i and λ2 = +i, which are the complex eigenvalues of the matrix. We
may then proceed as before, with the only difference being the use of complex
arithmetic, in solving the linear systems

A~v = ±i~v.

For example, the eigenspace associated with the eigenvalue λ1 = −i is ob-
tained by using Gauß-Jordan reduction:[

i 1 0
−1 i 0

]
R1←(i)·R1−→

[
1 −i 0
−1 i 0

]
−→

R2←R1+R2

[
1 −i 0
0 0 0

]
,

where we will stress the use of the complex conjugate of the pivot entry as a
row multiplier, here −i = (i), used to transform the pivot into a real number.
The second variable is then free:
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1.2. Repeated eigenvalues are trouble!

The eigenspace of A for the eigenvalue λ1 = −i is

~v = s
[

i
1

]
for s ∈ C.

In particular, ~v1 =

[
i
1

]
is an eigenvector associated with λ1 = −i.

The second eigenspace associated with the eigenvalue λ2 = i is obtained
also by using Gauß-Jordan reduction:[

−i 1 0
−1 −i 0

]
R1←(−i)·R1−→

[
1 i 0
−1 −i 0

]
−→

R2←R1+R2

[
1 i 0
0 0 0

]
,

where we again use the complex conjugate of the pivot entry as a row multi-
plier, here i = (−i). As before, the second variable is free:

The eigenspace of A for the eigenvalue λ2 = i is

~v = s
[
−i
1

]
for s ∈ C.

In particular, ~v2 =

[
−i
1

]
is an eigenvector associated with λ2 = +i.

1.2 Repeated eigenvalues are trouble!

As with second order differential equations, the case where the characteristic
polynomial has repeated roots is special and should be treated with care. An
example of bad behavior is the matrix

A =

[
1 2
0 1

]
.

Indeed, its characteristic polynomial is

det (A− λI2) =

∣∣∣∣1− λ 2
0 1− λ

∣∣∣∣ = (1− λ)2,

which has a unique double root λ = 1, which is the only eigenvalue of the
matrix. When we look at the associated eigenvectors, we proceed by Gaussian
elimination,[

0 2 0
0 0 0

]
RREF−→

[
0 1 0
0 0 0

]
.

This matrix has one pivot column, the second, and the first variable is free.
The space of solutions of the corresponding homogeneous, underdetermined
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2. Diagonalization

linear system is thus

~v = s
[

1
0

]
.

In particular, one cannot find two eigenvectors of the matrix which are linearly
independent! We will discuss this problem again in our presentation of diago-
nalization; before moving on, we state a general dimension counting rule:

Let A be a n× n square matrix, with m eigenvalues λ1, . . . , λm (m ≤ n)
which are the roots of the characteristic polynomial. Thus we can write

det (A− λIn) = (λ− λ1)
k1 · · · (λ− λm)

km ,

where k1, . . . , km are the algebraic multiplicities of the corresponding
eigenvalues, with

1 ≤ ki ≤ n and k1 + · · ·+ km = n.

When ki > 1, the corresponding root λi is repeated and we may have
more than one corresponding independent eigenvector. In fact, if we
call pi the number of independent eigenvectors associated with λi (also
called the dimension of the eigenspace of A associated with λi), then

pi = n− (Number of pivot columns in the RREF of A− λi In) .

The pi are the geometric multiplicities of the eigenvalues, and they may
not equal their algebraic multiplicities!

Note that we always have

1 ≤ pi ≤ ki.

In particular, when ki = 1 then pi = 1. However, when ki > 1, there may
sometimes be strictly less free eigenvectors associated with λi than the algebraic mul-
tiplicity (pi < ki) as in the exemple above. In this case, the total number of free
eigenvectors is less than n and they do not form a basis of the space Rn.

2 Diagonalization

The identification of the eigenvalues and eigenvectors of a matrix allows us
to introduce an important decomposition of matrices: the diagonalization, i.e.
a change of basis through which the matrix becomes diagonal. Geometrically,
a matrix corresponds to a linear transformation of space. The diagonalization
corresponds to an identification of the directions of space in which the trans-
formation acts as a pure dilatation or contraction. These directions are then
used to construct a new set of coordinates, in which the matrix corresponding
to the transformation is a simple diagonal matrix.
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2.1. Presentation and Examples

2.1 Presentation and Examples

Change of basis To start with, let us consider a 2× 2 matrix A with two
eigenpairs (λ1,~v1), (λ2,~v2), with distinct eigenvalues λ1 6= λ2. A point of the

plane X =

[
x1
x2

]
is usually identified by its cartesian coordinates (x1, x2):

X = x1

[
1
0

]
+ x2

[
0
1

]
.

However, this same point can also be identified by its coordinates (a1, a2) in
the basis of eigenvectors (~v1,~v2):

X = a1~v1 + a2~v2.

To go from the cartesian coordinates (x1, x2) to the new coordinates (a1, a2),
we form the matrix P whose columns are the eigenvectors ~v1 and ~v2): we write
schematically

P =
[
~v1 ~v2

]
.

Then,

X =

[
x1
x2

]
= P

[
a1
a2

]
.

To go in the other direction, we use the inverse of the matrix P:[
a1
a2

]
= P−1

[
x1
x2

]
= P−1X.

Using this change of basis and the corresponding matrix P, we can compute

AX = A(a1~v1 + a2~v2) = a1 A~v1 + a2 A~v2

= a1λ1~v1 + a2λ2~v2 = P
[

λ1a1
λ2a2

]
.

Now, let us introduce the diagonal matrix

D =

[
λ1 0
0 λ2

]
.

We continue our calculation:[
λ1a1
λ2a2

]
=

[
λ1 0
0 λ2

] [
a1
a2

]
= D

[
a1
a2

]
= DP−1X.
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2. Diagonalization

To conclude, we have the following identity for any point X in space:

AX = PDP−1X,

and thus we have that A = PDP−1.

The square matrix A of order n is diagonalizable if there is an invertible
matrix P of order n and a diagonal matrix D of order n such that, in

the original basis, i.e. applied to the vector of coordinates X =

[
x1
x2

]
:

A = PDP−1.

In the basis of eigenvectors, i.e. applied to the vector
[

a1
a2

]
:

D = P−1 AP.

Finally, we have the mixed formulation

AP = PD.

All three identities can be used equivalently.

• It is not always possible to diagonalize a matrix!

• However, any matrix of order n with n distinct eigenvalues is diagonal-
izable.

Example: 2× 2 matrix As a first example, we diagonalize the matrix A =[
3 1
5 3

]
. We proceed first by obtaining the eigenvalues and eigenvectors of A

as in the preceding section:
Step 1: determine the characteristic polynomial:

det (A− λI2) =

∣∣∣∣3− λ 1
5 3− λ

∣∣∣∣ = (3− λ)2 − 5 = λ2 − 6λ + 4.

Step 2: solve the characteristic equation for the eigenvalues:

λ2− 6λ+ 4 = 0  ∆ = 36− 16 = 20  λ1 = 3−
√

5, λ2 = 3+
√

5.

Step 3: solve for two eigenvectors corresponding to each eigenvalue. For
λ1 = 3−

√
5, we solve the underdetermined, homogeneous system,[

3 1
5 3

] [
x
y

]
= (3−

√
5)
[

x
y

]
.
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2.1. Presentation and Examples

Applying the Gauß-Jordan method, we form the augmented matrix and find
its RREF,[√

5 1 0
5
√

5 0

]
RREF−→

[
1 1/

√
5 0

0 0 0

]
.

Thus the second variable y is free and choosing its value as 1, we find a first
eigenvector

~v1 =

[
−1/
√

5
1

]
.

In the same way, we find an eigenvector for λ2 = 3 +
√

5 by solving the
underdetermined, homogeneous system,[

3 1
5 3

] [
x
y

]
= (3 +

√
5)
[

x
y

]
.

Applying the Gauß-Jordan method, we form the augmented matrix and find
its RREF,[

−
√

5 1 0
5 −

√
5 0

]
RREF−→

[
1 −1/

√
5 0

0 0 0

]
.

Thus the second variable y is free and choosing its value as 1, we find a second
eigenvector

~v2 =

[
1/
√

5
1

]
.

Step 4: assemble the matrices P and D:

P =
[
~v1 ~v2

]
=

[
−1/
√

5 1/
√

5
1 1

]
,

D =

[
3−
√

5 0
0 3 +

√
5

]
.

Step 5: check that everything is correct:

AP = PD =

[ √
5−3√

5

√
5+3√

5
3−
√

5 3 +
√

5

]
. X

Example: 3× 3 matrix Next we investigate the diagonalization of the matrix

A =

 1 2 1
6 −1 0
−1 −2 −1

 .
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2. Diagonalization

Step 1: Dompute the characteristic polynomial,

det (A− λI3) =

∣∣∣∣∣∣
1− λ 2 1

6 −1− λ 0
−1 −2 −1− λ

∣∣∣∣∣∣ .

We develop this determinant along the third column:

det (A− λI3) = +1 ·
∣∣∣∣ 6 −1− λ
−1 −2

∣∣∣∣+ (−1− λ) ·
∣∣∣∣1− λ 2

6 −1− λ

∣∣∣∣
= (−12− (1 + λ)) + (1 + λ) ((1 + λ)(1− λ) + 12)

= λ(−λ2 − λ + 12)

= −λ(λ− 3)(λ + 4).

Step 2: Determine the eigenvalues,

λ1 = −4, λ2 = 0, λ3 = 3.

Step 3: Determine the eigenvectors. For the first eigenvalue λ1 = −4, we
must solve the homogeneous system

A

x
y
z

 = −4

x
y
z

 .

Using the augmented matrix format, we reduce to RREF form: 5 2 1 0
6 3 0 0
−1 −2 3 0

 RREF−→

1 0 1 0
0 1 −2 0
0 0 0 0

 .

The first and second column are pivot columns, but the z variable is free, and
we fix its value as 1 to get a first eigenvector:

~v1 =

−1
2
1

 .

For the second eigenvalue λ2 = 0, we proceed in the same way to solve

A

x
y
z

 =

0
0
0

 .

Using the augmented matrix format, we reduce to RREF form: 1 2 1 0
6 −1 0 0
−1 −2 −1 0

 RREF−→

1 0 1/13 0
0 1 6/13 0
0 0 0 0

 .
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2.1. Presentation and Examples

The first and second column are pivot columns, but the z variable is free, and
we fix its value as −13 to get a second eigenvector:

~v2 =

 1
6
−13

 .

For the third eigenvalue λ3 = 0, we proceed in the same way again:

A

x
y
z

 = 3

x
y
z

 .

Using the augmented matrix format, we reduce to RREF form:−2 2 1 0
6 −4 0 0
−1 −2 −4 0

 RREF−→

1 0 1 0
0 1 3/2 0
0 0 0 0

 .

The first and second column are pivot columns, but the z variable is free, and
we fix its value as −2 to get a third eigenvector:

~v3 =

 2
3
−2

 .

Step 4: We assemble P and D:

P =

−1 1 2
2 6 3
1 −13 −2

 , D =

−4 0 0
0 0 0
0 0 3

 .

Step 5: We check our result. Here

AP = PD =

 4 0 6
−8 0 9
−4 0 −6

 . X

Example: 2× 2 matrix with complex eigenvalues As our third example,
we study the case of the matrix

A =

[
2 1
−2 4

]
.

Step 1: characteristic polynomial.

det(A− λI2) = (2− λ)(4− λ) + 2 = λ2 − 6λ + 10.
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2. Diagonalization

Step 2: solve λ2 − 6λ + 10 = 0 for the eigenvalues.

∆ = 36− 40 = −4 =⇒ λ1 =
6− 2i

2
= 3− i and λ2 = 3 + i.

Thus the roots of the characteristic polynomial, i.e. the eigenvalues, have com-
plex values. The eigenspace associated with the eigenvalue λ1 = 3− i is ob-
tained by using Gauß-Jordan reduction:[
−1 + i 1 0
−2 1 + i 0

]
R1←(−1+i)·R1−→

[
2 −1− i 0
−2 1 + i 0

]
−→

R2←R1+R2

[
1 − 1+i

2 0
0 0 0

]
,

where we will stress the use of the complex conjugate of the pivot entry as a
row multiplier, here −1− i = (−1 + i), used to transform the pivot into a real
number. The second variable is then free, and in particular

~v1 =

[ 1+i
2
1

]
is an eigenvector associated with λ1 = 3− i.

The second eigenspace associated with the eigenvalue λ2 = 3 + i is ob-
tained also by using Gauß-Jordan reduction:[
−1− i 1 0
−2 1− i 0

]
R1←(−1−i)·R1−→

[
2 i− 1 0
−2 1− i 0

]
−→

R2←R1+R2

[
1 i−1

2 0
0 0 0

]
,

where we again use the complex conjugate of the pivot entry as a row mul-
tiplier, here −1 + i = (−1− i). As before, the second variable is free, and in
particular

~v2 =

[ 1−i
2
1

]
is an eigenvector associated with λ2 = 3 + i.

Step 4: Assemble P and D:

P =

[ 1+i
2

1−i
2

1 1

]
, and D =

[
3− i 0

0 3 + i

]
.

Step 5: Practical check,

AP = PD =

[
2 + i 2− i
3− i 3 + i

]
. X
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2.2. Applications

2.2 Applications

While the theory of eigenvalues and diagonalization has a tremendous range
of applications in all of physics (in particular quantum mechanics is based
on eigenvalues!), engineering, computer science, it is out of the scope of this
note to discuss this - a quick Google search will give some examples (e.g. the
Google PageRank algorithm).

From our limited experience here, we can already see some of the practical
benefits of knowing the decomposition of the matrix in a diagonal form, A =
P−1DP, when it exists.

Computing the determinant: since the determinant of a product of matrices
is the product of the determinants, we get

det(A) = det(P−1DP) = det(P−1)det(D)det(P) = det(D)det(P)/ det(P),

so that det(A) = det(D) = λ1 · · · λn. The determinant of a diagonal matrix is
very easy to compute!

Computing the inverse: when none of the eigenvalues is zero, the matrix A is
invertible (since its determinant det(A) = λ1 · · · λn is nonzero!). In addition,
we have the formula

A−1 = P−1D−1P where D−1 =



1/λ1 0 · · · · · · 0

0 1/λ2
. . .

...
...

. . . . . . . . .
...

...
. . . 1/λn−1 0

0 · · · · · · 0 1/λn


Indeed, using the rules on the inverse of a product we know that(

P−1DP
)−1

= P−1
(

P−1D
)−1

= P−1D−1
(

P−1
)−1

= P−1D−1P.

Since computing the inverse of a diagonal matrix is very easy, we see that the
diagonalization of the matrix makes it quite easy to compute the inverse! In
fact...

Computing powers of the matrix: It is often useful to know the powers of the
matrix A, i.e. the repeated products

Ak =

k times︷ ︸︸ ︷
A× A× · · · × A or A−k =

k times︷ ︸︸ ︷
A−1 × A−1 × · · · × A−1,

where k is some positive integer. This is usually a costly computation, involv-
ing repeated matrix products! However, if we have successfully diagonalized
the matrix A then we can exploit the formula

A = PDP−1.

15



2. Diagonalization

Indeed, we have

Ak =

k times︷ ︸︸ ︷
PDP−1 × PDP−1 × · · · × PDP−1 = P

k times︷ ︸︸ ︷
D× D× · · · × D P−1 = PDkP−1

since all the intervening P−1P substitute for I, the identity matrix, and can be
removed from the product. Then the key is that Dk is very easy to compute! It
is just

Dk =



λk
1 0 · · · · · · 0

0 λk
2

. . .
...

...
. . . . . . . . .

...
...

. . . λk
n−1 0

0 · · · · · · 0 λk
n


.

One can also read Prof. Mori’s note on this subject, which is on my webpage,

http://math.umn.edu/~pcazeaux/teaching.html

or at the course webpage,

http://www.math.umn.edu/~gwanders/Math2373/matrix_powers.pdf.

2.3 Troublemakers: repeated eigenvalues and diagonalizability

Any square matrix of size n with n distinct eigenvalues can be diagonalized
if we admit complex eigenvalues. However, this is not always the case when
some eigenvalues have multiplicity greater than one, as seen in Section 1.2.

A case where it doesn’t work. We can look at the same example as in
Section 1.2:

A =

[
1 2
0 1

]
.

This matrix has the eigenvalue λ = 1 with algebraic multiplicity 2 and geo-
metric multiplicity 1: the eigenspace of A is the line

~v = s
[

1
0

]
.

With only one free eigenvector ~v1 =

[
1
0

]
, we cannot form the 2× 2 matrix P

we need for the diagonalization step! In fact, it is not possible to find such a
matrix: if we suppose that

A = PDP−1,
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2.3. Troublemakers: repeated eigenvalues and diagonalizability

then the characteristic polynomial of D is the same as the one of A:

det(A− λI) = det(PDP−1 − λI) = det(P(D− λI)P−1) = det(D− λI),

meaning that the only eigenvalue of D is also 1. Since D is diagonal, this
means that

D =

[
1 0
0 1

]
.

Thus D is the identity! As a consequence, PDP−1 = PP−1 = I, leading to the
conclusion

A = I.

This is obviously false! Thus our original premise that A can be written as
PDP−1 is wrong. The matrix A is not diagonalizable.

A case where it works. We now study the case of the matrix

B =

−1 −1 1
0 −2 1
0 0 −1

 .

Let us compute the eigenvalues of B: the characteristic polynomial is

det(B− λI) =

∣∣∣∣∣∣
−1− λ −1 1

0 −2− λ 1
0 0 −1− λ

∣∣∣∣∣∣ = (−1− λ)(−2− λ)(−1− λ)

= −(λ + 1)2(λ + 2).

So we have a simple eigenvalue λ1 = −2 with multiplicity 1, and a repeated
eigenvalue λ2 = −1 with algebraic multiplicity 2. Let us find the eigenvectors.
For the eigenvalue λ1 = −2, we solve the homogeneous system1 −1 1

0 0 1
0 0 1

x
y
z

 =

0
0
0

 RREF−→

1 −1 0
0 0 1
0 0 0

x
y
z

 =

0
0
0


The RREF has two pivot columns, the first and third; so the second variable y
is free. The solutions of this system then are

~v = s

−1
1
0

 with s ∈ R.
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2. Diagonalization

We can choose an eigenvector associated with λ1 = −2 such as

~v1 =

1
1
0

 .

For the eigenvalue λ2 = −1, we solve the homogeneous system0 −1 1
0 −1 1
0 0 0

x
y
z

 =

0
0
0

 RREF−→

0 1 −1
0 0 0
0 0 0

x
y
z

 =

0
0
0


Since the RREF has only one pivot column, the second, there is two free vari-
ables: x and z. The set of solutions is

~v = s

1
0
0

+ t

0
1
1

 with s, t ∈ R.

and we obtain two independent eigenvectors for λ2 = −1:

~v2 =

1
0
0

 and ~v3 =

0
1
1

 .

We thus have a set of three independent eigenvectors.

We assemble P and D:

P =

1 1 0
1 0 1
0 0 1

 , and D =

−2 0 0
0 −1 0
0 0 −1

 .
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